Higgs vs. hype: a mini-guide
Posted: Wed Dec 14, 2011 4:21 am
Physicists have revealed what they've found so far in their quest for the Higgs boson at Europe's Large Hadron Collider on Tuesday, after days of buildup that put the "God particle" on a par with Obi-Wan Kenobi and the Force. But the Higgs boson isn't a religious experience, and it won't help you destroy the Death Star. So what is the Higgs? And what do scientists know about it? Here's a small guide to the Large Hadron Collider's latest:
Why it's important: For decades, physicists have used a theory known as the Standard Model to explain the interactions of subatomic particles, and the theory works beautifully. It's guided our way through the world of nuclear power, television, microwave ovens and lasers. One problem: The theory needed something extra to explain why some particles have mass and some don't. Back in the 1960s, physicist Peter Higgs and his colleagues proposed the existence of a mysterious energy field that interacts with some particles more than others, resulting in varying values for particle mass. That field is known as the Higgs field, and it's associated with a particle called the Higgs boson.
Today, the Higgs boson is the last fundamental piece missing from the Standard Model. Finding it is the most commonly cited reason for building the $10 billion LHC. If the characteristics of the Higgs particle (or particles) match what's predicted by the current formulation of the Standard Model, that would bring a sense of completion to particle physics. If the Higgs isn't found, that might force physicists to tweak or even discard the Standard Model. "I find it difficult to imagine how the theory works without it," Peter Higgs recently told the London monthly Prospect. If a non-Standard Higgs is detected, that could totally change the way we see the universe. In the far future, we might even find a way to take advantage of the Higgs field, just as earlier physicists took advantage of the electromagnetic field, radioactivity or quantum effects.
Where they're at: The quest for the Higgs is being conducted using two detectors at the LHC, which is housed at Europe's CERN particle physics center on the French-Swiss border. The collider has been built inside a 17-mile-round (27-kilometer-round) underground tunnel where two beams of protons are smashed together at 99.999999 percent of the speed of light.
The detectors, known as ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid), are placed at key points on the collider ring. They're built somewhat differently, and they serve as a system of checks and balances to make sure one team can confirm what the other team is seeing. The LHC is the only collider on earth that can achieve the energies required to probe the Higgs boson's potential hiding places. (However, higher energies have been observed in cosmic ray collisions high above Earth's surface.)
Cosmic Log